
FQL-RED: an adaptive scalable schema for active queue

management

Seyed Saeid Masoumzadeh,1,*† Kourosh Meshgi,2 Saeid Shiry Ghidari2 and Gelareh Taghizadeh1

1Department of Computer and Information Technology, Qazvin Azad University, Qazvin, Islamic Republic of Iran
2Department of Computer Engineering, Amirkabir University of Technology, Tehran, Islamic Republic of Iran

SUMMARY

In a potentially congested network, random early detection (RED) active queue management (AQM) proved
effective in improving throughput and average queuing delay. The main disadvantage of RED is its sensitive
parameters that are impossible to estimate perfectly and adjust manually because of the dynamic nature of the
network. For this reason, RED performs differently during different phases of a scenario and there is no guarantee
that it will have optimal performance. Giving adaptability to RED has been the subject of broad research studies
ever since RED was proposed. After a substantial study of AQM schemes and presenting a novel categorization
for so-called modern approaches utilizing artificial intelligence tools to improve AQM, this paper proposes an
algorithm enhancing RED as an add-on patch that makes minimal changes to the original RED. Being built on the
basis of AQM schemes like ARED and Fuzzy-RED, this algorithm inherits adaptability and is able to adjust RED
inaccurate parameters regarding network traffic status, trying to optimize throughput and average queuing delay
in a scenario. This algorithm is a Q-learning method enhanced with a fuzzy inference system to provide RED with
self-adaptation and improved performance as a result. Given the name of FQL-RED, this algorithm outperformed
RED, ARED, and Fuzzy-RED, as the OPNET simulations show. Copyright © 2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

It is generally accepted that the problem of network congestion control remains a critical issue and a
high-priority one, especially given the growing size, demand, and speed (bandwidth) of the increas-
ingly integrated service networks. Despite the research efforts spanning a few decades and the large
number of different schemes proposed, there are no universally acceptable control solutions. Current
solutions in existing networks are becoming ineffective, and it is generally accepted that these solutions
cannot easily scale up—even with various proposed ‘fixes’. In this paper we propose a fuzzy-based
congestion control approach, with traffic adaptability to address the congestion control problem. The
performance of the proposed controlled system is evaluated via simulation.

Since our proposed scheme—fuzzy Q-learning random early detection (FQL-RED)—is fully compat-
ible with RED, we can easily upgrade or replace the existing RED implementations by FQL-RED
through patches.

1.1 Classical active queue management (AQM)

The problem of active queue management was first introduced into congestion control literature by the
RED algorithm [1]. The problem then received more attention and formed the classic congestion control

*Correspondence to: Seyed Saeid Masoumzadeh, Qazvin Azad University, Computer and Information Technology, Qazvin,
Islamic Republic of Iran
†E-mail: masoumzadeh@gmail.com

INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt (2010)
Published online in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/nem.755

Copyright © 2010 John Wiley & Sons, Ltd.

Received 09 April 2009
Revised 12 February 2010

Accepted 18 February 2010

schemes. Classic AQM algorithms are classified according to the criteria on which the decision to drop
packets from the queue (when the link suffers from congestion) is made. Four different strategies for
queue management can be identified: (i) based on average queue length; (ii) based on packet loss and
link utilization; (iii) class-based QM; and (iv) based on control theory. Alternatively, algorithms can be
classified as being either reactive or proactive. A reactive AQM algorithm focuses on congestion
avoidance, i.e. active early detection of and reaction to congestion. Congestion can occur in this case,
but it will be detected early. Decisions on the actions to be taken are based on current congestion. A
proactive AQM algorithm focuses on congestion prevention, i.e. intelligent and proactive dropping of
packets, resulting in prevention of congestion from ever occurring and ensuring a higher degree of
fairness between flows. Decisions on the actions to be taken are based on expected congestion [2].

In the first class of reactive AQM algorithms the dropping decision is based on the observed average
queue length. The algorithms in this class can be divided further based on attention paid to fairness
as it applies to the distribution of available bandwidth over the active data flows. RED is the basis for
all algorithms in this class. It has been widely used in combination with TCP, and is known to have
several drawbacks, which have led to the design of many other, improved algorithms. ARED [3], FRED
[4], SRED [5], CHOKe [6], QVARED [7], and PUNSI [8] are typical algorithms of this class.

The main idea behind the second class of algorithms is to perform AQM based on packet loss and
link utilization rather than on the instantaneous or average queue lengths. Algorithms in this class
maintain a single probability p, which is used to drop packets when they are queued. If the queue is
continually dropping packets due to buffer overflow, p is incremented, thus increasing the rate at which
congestion notifications are sent back. Conversely, if the queue becomes empty or if the link is idle, p
is decremented. Note that, in contrast to the first class of AQM algorithms, no queue occupancy
information is used. BLUE and SFB [9], MRED [10], SFED [11], FABA [12], YELLOW [13], LUBA [14]
and RAQM [15] are members of this class.

For the algorithms belonging to the third class, the treatment of an incoming packet (under
congestion circumstances) depends on the class this packet belongs to. Theoretically, there are many
possible class definitions, but in practice it is most common to categorize incoming packets based on
the transport protocol (i.e., TCP or UDP) that has been used to send the packet. With this type of
algorithms, for every non-TCP class a threshold is defined, setting a limit to the maximum amount of
packets that a certain class can achieve in the queue. CBT [16] and DCBT [17] characterized this class
of AQM algorithms as well as SHRED [18].

The fourth category of algorithms has been developed using classical control theory techniques. The
queue length at the router is regulated to agree with a desired value by eliminating the ‘error’, that is,
the difference between the queue length and this desired value. As a good example of this class,
PI-controller [19], DRED [20], AVQ [21], SAVQ [22], EAVQ [23] and PRC [24] can be mentioned.

There are some hybrid algorithms which make use of the benefits of each class to compensate the
cons of another group. REM [25], SVQ [26], and RaQ [27] are examples of this group.

One important drawback of the reactive AQM algorithms is that their congestion detection and
control functions depend only on either the current queue status or the history of the queue status (e.g.
the average queue length). Hence the congestion detection and control in these algorithms are reactive
to current or past congestion, but do not respond proactively to incipient congestion. For example, the
congestion detection method in RED can detect and respond to long-term traffic patterns using
exponentially weighted moving average (EWMA) queue lengths. However, it is unable to detect
incipient congestion caused by short-term traffic load changes. In this case, the implicit congestion
notification sent back to the end hosts by a packet drop may be an inappropriate control signal, and
can possibly make the congestion situation worse. The idea behind proactive AQM schemes is that the
packet drop probability at time t is not only a function of the current system parameters (and thus the
parameter values at time t) and/or previous values (at time t -1, t -2, etc.), but also on (estimations
of) future parameter values (e.g. at time t + 1). GREEN [28] and PAQM [29] are two proposed
algorithms of this class. A detailed study on different classic active queue management algorithms can
be found elsewhere [2,30,31].

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

1.2 Developments to AQM

Sally Floyd, who developed RED, proposed that this algorithm can perform better when it is adaptive
regarding the traffic of the network [32]. Thus Floyd extended the algorithm to achieve this adaptability
but with no means from artificial intelligence (AI). Various extensions of the RED algorithm can be
found [33–37] but still no AI method is used.

The classic approaches of AQM suffer from inaccurate parameters and therefore need human experts
to adjust these parameters based on their knowledge, the application and traffic history. On the other
hand, incipient congestions in the queue of routers can hardly be detected, which in turn result in
decreased performance because of dealing with congestion side effects instead of just avoiding them.
On the other hand, misbehaved sources are a treat to fairness of algorithms but usually no effort is
spent in finding and extinguishing them. Also the packet drop policy usually follows a linear approach
and lacks the flexibility needed to have maximum link utilization and throughput with lower packet
drop rate. Machine intelligence tools are introduced in the AQM literature to address these drawbacks
of classic methods and form a new generation of so-called modern schemes. Again four different
categories of AI strategies for performance boost are introduced and have embedded in the AQM
literature: (i) parameter tuning of classic approaches; (ii) prediction or detection of incipient congestion;
(iii) classify sources based on their behavior and define service policy for them; and (iv) intelligent
packet drop rate adjustment.

The first and most popular type of enhancement of AQM schemes is tuning the parameters of
classic schemes. Having free parameters, an AQM scheme suffers from degradation of functionality
in some circumstances, so its parameters need to be adjusted carefully regarding the scenario of use.
These parameters can be time constants, thresholds, weighting coefficients, or more complex ones
that play a critical role in the behavior of the system. Handling traffic turbulences, maximizing the
utilization of links, minimizing queuing delay etc. are the results of fine tuning of the parameters
in a scenario. As an example, the classic ARED algorithm is shown to do better than RED across
congested links through multiple experiments, yet it still needs to be modified to adapt to the
changes of network load more effectively. Fuzzy DS RED [38] proposed to use fuzzy rules for RED,
believing that fuzzy logic improves the packet drop in a network. Also being facilitated with a fuzzy
rule base, AFRED [39] benefits from adaptability, which enables it to perform well in dynamic
environments such as networks with dynamic traffic types. FCRED [40], another scheme, uses a
fuzzy controller to adjust maximum drop probability. Neuron-RED [41] and Neuron PID [42] use a
neural controller to perform the same task. These three algorithms try to stabilize the average queue
length around the target queue length. To guarantee the queuing delay in a RED-based queue, a
method has been devised [43] which uses stochastic learning automata and thus makes the RED
adaptive. PSO-PID [44] extends the PID method with the help of the particle swarm optimization
algorithm, using it to adjust PID controller parameters. RBF-PID [45] is another example of adjusting
these parameters adaptively, in this case using an RBF neural network. In this approach, the RBF
neural network is used to adjust PID parameters regarding link capacity, traffic load and transmis-
sion delay. In Yanfei et al. [46] the fuzzy decision process is used to make the packet drop
mechanism intelligent. GA-based PID [47] offers a PID controller based on a genetic algorithm and
states that this extended algorithm increases throughput and decreases packet loss in regard to the
classical PID controller scheme and also keeps the queue length steady. A genetic algorithm has been
proposed [48] and evaluated for the optimal tuning of fuzzy PI controller parameters. The main
objectives of the controller design method are fast response to high load variations and disturbance
rejection in steady-state behavior. These design goals are encoded in a performance index and the
genetic algorithm optimally tunes the fuzzy controller parameters. Adaptive and classic control
theory serves this category of AQM enhancement as well. Methods have been proposed [49–51] that
were designed to stabilize RED by this means.

There are plenty of fixed-strategy self-configuring schemes that use heuristics to adapt parameters.
Self-configuring RED [52] is a good example of these. The idea behind this algorithm is to infer

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

whether RED should become more or less aggressive by examining the variations in average queue
length. Based on the observed queue length dynamics, the algorithm adjusts the value of parameters
by scaling them by constant factors, depending on which threshold it crosses. Although performing
well, such algorithms do not use AI and do not meet our criteria for categorization as a modern
approach.

A second way of providing intelligence to AQM approaches is predicting incipient congestion or
detecting congestion in the early stages. Enabling a router to predict congestion by learning from
previously experienced similar conditions or by embedding knowledge into its decision-making
mechanism will improve the throughput and prevent drastic packet loss. Distinguishing bursty traffic
from probable congestion is another goal which AI promises to help AQM towards. A congestion
detector using fuzzy logic has been devised [53] that not only inherits good behavior of classic AQM
schemes but also the membership functions are automatically defined using PSO algorithm. Another
example is a method [54] that uses neuro-fuzzy prediction to capture traffic bursts and correctly
predicts incoming steady congestion. NN-RED [55] uses an artificial neural network to predict an early
congestion in RED.

Misbehaving sources challenge the fairness of a scheme and lower the quality of service (QoS) of the
router to other sources. Classification of sources and crediting them based on their history is a favor
that AI and accounting schemes can do for AQM algorithms. While accounting methods follow a crisp
strategy to detect and interact with flows, intelligent approaches bring more flexibility and maintain
high link utilization, yet are capable of handling congestion more effectively. There is no significant
research in this area to date, but it is possible with current knowledge.

Early AQM algorithms propose a linear packet drop rate which relates to queue length or packet
loss rate. Nonlinear approaches (e.g. GRED [56] and Exponential RED [35]) worked well to improve
the performance of AQM approaches, but adjustable curves of packet drop rate against queue delay
are preferred as they were shown to be effective in absorbing bursts and maintaining a non-full
queue with high throughput. NLRED [57] is the same as the original RED except that the linear
packet-dropping probability function is replaced by a nonlinear quadratic function. While inheriting
the simplicity of RED, NLRED was shown to outperform RED, is less sensitive to parameter
settings, has a more predictable average queue size, and can achieve a higher throughput. Another
minimal adjustment to the RED algorithm was proposed by Hyperbola RED (HRED), which uses the
hyperbola as the drop probability curve [58]. The control law of HRED can regulate the queue size,
which can be set by the user. As the reference queue size is set by the user, HRED is no longer
sensitive to the level of network load and it can achieve higher network utilization and result in
predictable average queuing delays. It retains the ability to control short congestion by absorbing
bursts, because it still keeps the moving average queue size algorithm and maintain a non-full
queue. The next development used a fuzzy logic controller for RED [59]. This approach is based on
the idea that linguistic labels can perform well in implementing nonlinear probabilistic drop func-
tions because they have a better understanding of the environment, so this approach can provide
better QoS for different types of traffic.

It gets even more interesting when AI tends to solve network congestion problems without having
a classic AQM scheme as its basis. A good example is the novel approach proposed in Hadjadj Aoul
et al. [60], which is based on self-adaptation, i.e. the AQM scheme adjusts its own parameters in the
operation to achieve the highest performance level. This method does not follow any of the classic
approaches but uses a fuzzy logic-based AQM and optimizes the equilibrium of throughput against
queuing delay.

As is clear from the literature, enhancing RED as the most popular AQM used today and adjusting
its parameters as the favorite type of enhancement over RED forms the largest portion of modern AQM
literature. Most of these approaches try to solve the drawbacks of this algorithm (to be discussed in
Section 2.2) by addressing one issue directly, which will also improve others implicitly. In this paper
we follow this popular pathway and adjust RED parameters dynamically using AI, stated technically
as a Q-learning algorithm enhanced by fuzzy inference system.

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

2. BASIC SCHEME OF CONGESTION CONTROL

2.1 Random early detection algorithm

RED, proposed in 1993, was the first AQM algorithm developed [1]. It has been widely used with TCP
and has been recommended by the Internet Engineering Task Force. RED has served as the basis for
many other algorithms. The algorithm detects incipient congestion by computing the average queue
size at the router. When this average queue size exceeds a certain preset threshold, the router drops or
marks each arriving packet with a certain probability pa, which is a linear function of the average queue
size. Connections are notified of congestion either by dropping packets arriving at the router, or rather
by setting a bit in packet headers (which is referred to as ‘marking a packet’). RED can be specified in
pseudo-code as shown in Figure 1, where minth and maxth are minimum and maximum thresholds
which can be set by the algorithm user, and are both smaller than the maximum queue size allowed
by the router. Whenever a packet arrival is detected by a router implementing RED, the average queue
size qavg is calculated using a low-pass filter to reduce the potentially significant influence that the
short-term traffic bursts could have on the average queue size.

Calculation of qavg is carried out using

q w q w qq qavg avg= −() × + ×1 (1)

where q is the instantaneous queue length as observed at the router and wq is the weight applied by
the low-pass filter to the ‘old’ average queue size. By increasing this value wq, the influence of the
current queue size on qavg is also increased. This will raise the influence of traffic bursts on the average
length of queue. After qavg has been calculated, it is compared to two threshold values: minth and maxth.
When qavg is smaller than minth no packets are marked, and thus each arriving packet is appended at
the end of the queue. When qavg lies between minth and maxth, each arriving packet is marked with
probability pa. When qavg is greater than maxth, all incoming packets are marked with probability 1. The
marking probability pa is calculated as follows:

P P
q

a =
−
−max
min

max min
avg th

th th

(2)

In the original algorithm, pa is increased even further as a function of the number of packets that have
arrived since the last packet was marked, resulting in a new marking probability pb. Figure 2 shows a
graphical representation of the possible values for the marking probability pa.

Here we summarize some of the design goals and guidelines for RED gateways. The main goal
of this algorithm is to provide congestion avoidance by controlling the average queue size. Addi-
tional goals include the avoidance of global synchronization and of a bias against bursty traffic and
the ability to maintain an upper bound on the average queue size even in the absence of coop-
eration from transport layer protocols. The first job of a congestion avoidance mechanism at the
gateway is to detect incipient congestion. A congestion avoidance scheme maintains the network in

For each packet arrival:
 Calculate the average queue size qavg

If minth ≤ qavg < maxth

 Calculate probability pa

 With probability pa: mark/drop the arriving packet
Else if maxth ≤ qavg

Mark/drop the arriving packet
Else

Do not mark/drop packet

Figure 1. Pseudo-code of RED algorithm

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

a region of low delay and high throughput. The average queue size should be kept low, while
fluctuations in the actual queue size should be allowed to accommodate bursty traffic and transient
congestion. The gateway monitors the size of the queue over time, so it is the appropriate agent to
detect incipient congestion. Having a unified view of the various sources contributing to this
congestion, the gateway is also the appropriate agent to decide which sources to notify of this
congestion. As a result, in a network with connections with a range of different requirements for
roundtrip times, throughput, and delay sensitivities, the gateway is the most appropriate agent to
determine the size and duration of short-lived bursts in the queue size to be accommodated by the
gateway. The RED gateway can do this by controlling the time constants used by the low-pass filter
for computing the average queue size.

Our proposed scheme gives the gateway an intelligent tool to optimize this control, alongside
controlling other parts of the algorithm autonomously. The goal of the gateway is to detect incipient
congestion that has persisted for a ‘long time’ (several roundtrip times). The second job of a congestion
avoidance gateway is to decide which connections to notify of congestion at the gateway. One goal is
to avoid a bias against bursty traffic. Networks contain connections with different burstiness, and
gateways such as Drop Tail and Random Drop gateways have a bias against bursty traffic. With Drop
Tail gateways, if the incoming traffic from a particular connection is burstier, the gateway queue is more
likely to overflow when packets from that connection arrive at the gateway. Another goal in deciding
which connections to notify about the congestion is to avoid the global synchronization that results
from notifying all connections to reduce their windows at the same time. Global synchronization has
been studied in networks with Drop Tail gateways where this phenomena results in loss of throughput
in the network. In order to avoid problems such as biases against bursty traffic and global synchro-
nization, congestion avoidance gateways can use distinct algorithms for congestion detection and for
deciding which connections to notify of this congestion. The RED gateway uses randomization in
choosing which arriving packets to mark, as all its successors do. With this approach, the probability
of marking a packet from a particular connection is roughly proportional to that connection’s share of
the bandwidth through the gateway. This method can be efficiently implemented without maintaining
per-connection state at the gateway. One goal for a congestion avoidance gateway is the ability to
control the average queue size even in the absence of cooperating sources. This can be done if the
gateway drops arriving packets when the average queue size exceeds some maximum threshold (rather
than setting a bit in the packet header). This method could be used to control the average queue size
even if most connections last less than a roundtrip time (as could occur with modified transport
protocols in high-speed networks), and even if connections fail to reduce their throughput in response
to marked or dropped packets. This maximum threshold is also efficiently adjusted in our proposed
method autonomously, as will be mentioned soon.

Figure 2. RED algorithm mark probability

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

2.2 Disadvantages of RED

Despite having been widely used in combination with TCP for several years, RED has not found
acceptance in the Internet research community [2]. The reason comes from the drawbacks of this
algorithm, which can be summarized as follows:

• The packet loss fraction is equal for all flows, regardless of the bandwidth used by each flow.
• No restriction exists against aggressive, non-adaptive flows, which has a negative impact on

well-behaving, adaptive flows.
• It is difficult to parameterize RED queues to give good performance under different congestion

scenarios.
• The equilibrium queue length strongly depends on the number of active TCP connections.
• RED performance is sensitive to the packet size [57].
• With RED, wild queue oscillation is observed when the traffic load changes [5].

These drawbacks have been the main reason for the development of a vast collection of improved AQM
algorithms, of which the most significant are presented earlier in this paper. Although RED suffers from
these defects, it is implemented in the vast majority of routers, including all well-known manufactured
products. Designing add-ons for the current RED algorithm and applying them in the form of software
or hardware patches to the existing routers, instead of changing them to totally new ones, is the only
economically acceptable solution for this problem. In this paper, we introduce an add-on complemen-
tary algorithm which is able to solve most of the drawbacks of RED.

To address these issues, AQM algorithms have tried to collect additional information from the
network to be able to react more intelligently to different conditions. Tools such as accounting
mechanisms (e.g. SFB), active connection number estimators (e.g. FPQ [61]), zombie list (e.g. SRED [5]),
and early congestion predictors (e.g. NN-RED [55]) are good examples of this claim. Although they
provide good knowledge of the network, they are expensive in terms of computational power and/or
memory for the routers they are operating on. On the other hand, most of these schemes are able to
focus on limited parameters of the network but ignore other parameters. Furthermore, some of the
proposed methods lose modularity in their design process and are hard to extend. As is obvious from
the literature, adjusting efficient parameters for RED or its derivations is the most popular scheme,
while some algorithms improve fairness too, and some other schemes prove independence to the
number of TCP connections. Except for proactive schemes, all algorithms use traffic history directly or
indirectly to detect incipient congestion, make decisions about dropping a packet, punish misbehaving
connections, and other congestion-related operations. In order to maintain the traffic history, different
means are utilized, from a single parameter that is updated with an EWMA [1] to neural networks [41]
and complex data structures.

In summary, the main defect of the RED algorithm is its parameters, because it is difficult to adjust
them well enough to perform satisfactorily in different scenarios. This issue is usually not fully solved
even with the help of experts, due to factors such as non-real time network response, human mistakes,
lack of full-time monitoring, and financial issues. Designing a mechanism to adjust the parameters
automatically is the best choice that comes to mind. Briefly, this suggests a solution for ‘adjusting
parameters of RED algorithm to improve its performance in different congestion scenarios’. Each
scenario is a network with different kinds of applications such as multimedia, file transfer, real-time
applications, and low fault-tolerable data communication. The parameters of the RED algorithm are
minth, maxth, maxp, and wq. To improve performance, these parameters should change according to
current network traffic, and the mission of AQM algorithms is to best manage the condition automati-
cally. Our method uses machine learning to serve this need for automation.

2.3 Sensitivity of RED parameters

Network traffic can hardly be modeled in many networks. Thus the process of parameter adjustment
in AQM algorithms is different and, if done manually, loses accuracy as traffic changes. RED

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

gateways have additional parameters that determine the upper bound on the average queue size,
the time interval over which the average queue size is computed, and the maximum rate for
marking packets. The congestion avoidance mechanism should have low parameter sensitivity,
and the parameters should be applicable to the networks with widely varying bandwidths. A
network designer has to decide between three RED gateway parameters, wq, minth, and maxth,
to make decisions about the average queue size and allowable queue burst. The parameter maxp

can be chosen from a fairly wide range, because it is an upper bound on the actual marking
probability pa.

To have efficient parameter values for the basic RED algorithm some rules have been introduced that
give adequate performance to the RED gateway under a wide range of traffic conditions [1]. Also there
exist a few rules of thumb to improve performance of the RED gateway [61]:

1. To ensure adequate calculation of the average queue size, set wq � 0.001. The average queue
size at the gateway is limited by maxth, as long as the calculated average queue size qavg is a
fairly accurate reflection of the actual average queue size. The weight wq should not be set too
low, so that the calculated average queue length does not delay too long in reflecting increases
in the actual queue length. The calculation of the average queue size can be implemented
particularly efficiently when wq is a (negative) power of two. Equation (3) describes the upper
bound on wq required to allow the queue to accommodate bursts of L packets without marking
packets. Given a minimum threshold minth, and given that we wish to allow bursts of L
packets arriving at the gateway, then wq should be chosen to satisfy the following equation for
avgL < minth:

L
w

w
q

L

q

+ +
−() −

<
+

1
1 11

minth (3)

2. Set minth sufficiently high to maximize network power. The thresholds minth and maxth should be
set sufficiently high to maximize network power. Because network traffic is often bursty, the actual
queue size can also be quite bursty; if the average queue size is kept too low, then the output link
will be underutilized.

3. Make maxth - minth sufficiently large to avoid global synchronization. Make maxth - minth larger
than the typical increase in the average queue size during a roundtrip time, to avoid the global
synchronization that results when the gateway marks many packets at one time. One rule of
thumb would be to set maxth to at least twice minth. If maxth - minth is too small, then the
computed average queue size can regularly oscillate up to maxth; this behavior is similar to the
oscillations of the queue up to the maximum queue size with Drop Tail gateways.

4. RED is highly dependent on the number of active TCP connections (N). As shown in Morris [61],
the length of queue is related to maxth, maxp and N as shown in equation (4):

q N
p

= × ×0 91 23.
max
max

th (4)

An RED router works well if q never exceeds maxth, so that the router is never forced to drop 100%
of incoming packets. Equation (4) implies that the parameter values required to achieve this goal
depend on the number of active connections. This is a formalization of an idea used by ARED and
SRED, which keep q low by varying maxp as a function of N. The observation that one could
alternatively change maxth and keep maxp fixed is one way of looking at the FPQ algorithm
presented in Morris [61]. In order to compensate for the influence of N or even to take advantage
of it, the ratio of maxth/maxp should be adjusted cautiously.

5. Set maxth high enough to avoid retransmissions. Due to the fact that drop probability in RED
jumps from maxp to 100% when queue length exceeds maxth, the volume of the retransmissions
raises immediately for TCP packets, acting as another critical traffic burst.

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

2.4 Dynamics of RED

The RED algorithm deals with some problems such as global synchronization, bounded delay
requirement, priority of some packets over others, transient network states, jitters, connection starva-
tion, bursty traffic with characteristics of incipient congestion and, most important of all, four free
parameters: maxth, maxth, maxp, and wq.

A queue is assumed to be lightly loaded when average queue size is less than minth, so more packets
could pass the gateway without being marked and getting dropped. Setting minth to an appropriate
value could help the gateway to maintain good link utilization. Relatively small values of minth

(minth << maxth) tend to keep the queue size low. Approaching minth to maxth (minth → maxth) leaves the
gateway vulnerable to bursts and in the case of equal values (minth = maxth) RED is reduced to the TCP
Tail Drop [62] mechanism.

Adjusting the maximum threshold of RED is the subject of much of the reviewed literature. This is
due to the extensive role of this parameter in handling congestion. (i) Algorithms like ARED [36] and
DSRED [63] try to converge average queue length to a predefined length L. In modern approaches this
length is dynamically changed and maxth controls it directly by dropping all packets when average
queue length exceeds this threshold. Therefore, in order to maintain a suitable queue length, maxth

should be set properly. (ii) This parameter is the marginal value between the normal situation and a
congested one, so in order to detect congestion the critical value would be maxth to determine
congestion. (iii) As stated in equation (4), this parameter can neutralize the effect of active connection
count. On the other hand, a quick change of queue length causes jitter and is not desired (though much
control theoretic-based AQM tries to stabilize queue length as well as other schemes). Setting maxth to
small values (maxth → minth) results in not using the full capacity of the link and again the case of equal
values (minth = maxth) results in the Tail Drop [62] mechanism. Increasing this threshold (maxth → B) can
increase the probability of full buffer and connection starvation.

In the transient congestion window, when the queue length is between two thresholds
(maxth < q � maxth) the drop probability linearly correlates with average queue length, which would be
maxp when this average reaches maxth. This parameter defines the way RED deals with transient traffic.
Like maxth, this parameter can neutralize the effect of an active connection count. A high value of maxp

(maxp → 100) easily allows the queue length to grow to buffer size, and low values of this parameter
(maxp → 0) make a pessimistic assumption about traffic and interpret every burst as severe congestion.
When this maximum probability becomes zero (maxp = 0), RED is again reduced to Tail Drop.

wq defines the inertia of RED against the change in average queue length. Too high a value of wq

cannot filter transient congestion and expose average queue length to high turbulence. On the other
hand, too small a value of wq responds slowly to queue length changes and the gateway cannot detect
early congestion.

3. PROPOSED SOLUTION

3.1 Automation and prediction

Earlier in this paper we justified that most AQM schemes take advantage of network traffic history to
predict its future behavior. This history can affect several aspects in which an AQM scheme is dealing
with the network. As is common in the real world, the traffic of networks is almost the same for long
periods of time, maintaining mostly constant or periodic behavior. The reviewed AQM mechanisms
counted on this fact and used the history as an immediate response to all conditions, even if it is not
exactly the same. The main problem of AQM schemes is their inaccurate parameters, as was mentioned
before. Setting these parameters automatically is of great importance to improve a scheme. Additionally,
several individual input states can lead to a state of the network in which the history of the network
may have the ability to predict the next probable state transition.

Regarding these two needs—automation and prediction—one of the best solutions is to give the
scheme learning ability.

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

One of the missions of an AQM scheme is accommodating bursty traffic in a buffer. To accept L
bursty packets, the RED algorithm needs to adjust minth such that equation (3) remains true. This is a
constraint on the values of minth and wq. On the other hand, these schemes should handle transient
congestions and distinguish them from steady ones. The average queue length is an indicator for
congestion. Its change over time is determined by means of an EWMA using wq as the weight. Thus
manipulating this weight will define the inertia of the scheme to change state between transient and
steady congestion. The intelligence to adjust this parameter lies in using traffic history to optimally set
this weight. Additionally, the parameter maxth cooperates in the process of congestion detection and
deciding when immediate full drop is needed. The maxp parameter value really matters in dealing with
transient congestion and tries to keep the queue as responsive as possible. The way traffic reacted in
the past against packet drops in this situation is the key of improving this parameter. Nevertheless,
maxp and maxth are engaged in another constraint dictated by equation (4) to compensate for the effect
of the number of TCP connections. Estimation of this number, N, costs some computational power [61],
which is not always feasible for all kinds of routers, and implicit compensation for it seems a better
solution. The process of using history by means of some statistical methods or estimators is vulnerable
to changes in the network, including changes in topology, application and faults. Thus, as a primary
objective, the scheme should keep responding to new situations appropriately, and secondarily, should
maintain the history to respond to cases similar to the stored ones.

Machine-learning tools are appropriate for maintaining history. They offer a wide range of methods,
each of which is suitable for various types of problems. Reaction to traffic conditions of the network
is a subject that should be learned in this case. Thus some features must be extracted in a way that
represents a condition of traffic with appropriate details. On the other hand, traffic history contains
many repeated situations. Appropriate actions to deal with these situations which change RED
parameters are to be learnt along with traffic transition, although the learning agent will be more
effective in the case of periodic traffic.

Reinforcement learning is the problem faced by an agent that has to learn behavior through trial and
error interactions with a dynamic environment, Further, there is a focus on online performance, which
involves finding a balance between exploration (of uncharted territory) and exploitation (of current
knowledge). Thus reinforcement learning is particularly well suited to problems which include a
long-term versus short-term reward trade-off. It has been applied successfully to various problems,
including robot control, elevator scheduling, telecommunications, backgammon and chess [64]. One of
the most effective algorithms of this type is Q-learning. Q-learning is a reinforcement learning
technique that works by learning an action-value function that gives the expected utility of taking a
given action in a given state and following a fixed policy thereafter. Q-learning is able to compare the
expected utility of the available actions without requiring a model of the environment. The core of the
algorithm is a simple value iteration update. For each state s from the state set S, and for each action
a from the action set A, we can calculate an update to its expected discounted reward using the
following expression:

Q s a Q s a s a r Q s a Q s at t t t t t t a t t t, , , max , ,() = () + () × + × () − ()[]+ +α γ1 1 (5)

where rt is an observed real reward at time t, at(s,a) are the learning rates such that 0 �at(s,a) � 1, and
g is the discount factor such that 0 g < 1.

The problem presented in this paper will be modeled in the form of a Q-learning optimization
problem. Each Q-learning problem consists of four design parts: input states, actions, goal (or goals),
and reinforce signal. Input states and actions will be described in full detail in the implementation
section.

As stated, Q-learning uses a table to save the state–action values. This table is subjected to grow in
size with the growth of states or actions. In this problem, each state is a combination of values of each
input, each of which usually has a wide range. Thus there will be a large input space and the table
seems impossible to fit into the available memory of routers. This issue, along with other issues such

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

as similar actions for similar states and dependency of states count on the buffer size of each individual
router, drives us to obtain assistance from fuzzy logic.

3.2 Using a fuzzy inference system

Modeling states of the reinforcement learning algorithm by using a fuzzy rule base facilitates this
algorithm to deal with large or continuous spaces, e.g. state and/or action space. Thus it is a
mechanism to handle high dimensionality for a table-driven algorithm like Q-learning. This ability for
generalization provides flexibility to Q-learning so that it can have variable input state size in different
cases. This model also enables knowledge encapsulation into the learning table, i.e. to merge a priori
or expert knowledge into the problem. Taking advantage of fuzzy logic, the model is also able to
generate continuous actions. Since Q-learning and temporal difference (TD) learning are typically slow,
i.e. the agent needs more trials and episodes to learn the desired behavior, the need for a little boost
emerged. Fuzzy logic, with its fast nature, speeds up the learning process of these algorithms [65],
which makes fuzzy Q-learning (FQL) a fast and powerful extension to classic Q-learning and makes it
a sound choice to serve as the machine learning basis of our algorithm.

Fuzzy reinforcement learning is based principally on fuzzy inference systems (FIS). FIS are universal
approximators and they can learn by example. The most important feature of FIS is that they can
incorporate human a priori knowledge into their parameters and that these parameters have clear
physical meaning which will actually speed up learning. An FIS is based on a rule base in which each
rule received an antecedent part and its corresponding consequent. Usually the antecedent combination
does not matter in tuning FIS, while the issue is the choice of different linguistic terms for each fuzzy
variable and the conclusion of each rule. With the method used here it is possible to tune the conclusion
part of each rule in a TS-FIS and this would be done over all possible rules in the rule base. FQL is
the fuzzy extension of Q-learning, which is an online model-free optimization of a control policy. Briefly
speaking, FQL use of TS-FIS estimates the Q-value function for the current state–action pair. This
Q-value function, along with the optimal Q-value of the state, calculated in the same way, will be used
to compute TD error. Later on, based on the TD error and update rule of TD learning, the action
weights will be updated towards gaining more reinforcement, as is the case in Q-learning. The agent
then chooses actions based on the quality values (weights) of different actions available in the action
set of each rule, along with an exploration/exploitation mechanism named double e-Greedy [66]. As
shown in the schematic diagram in Figure 3, everything is based on the actions’ quality values and
fuzzy inference. Our proposed method to improve RED algorithm was named FQL-RED after this
learning mechanism and the whole process of learning is abstracted in the add-on module which is
added to RED, just changing the main parameters of RED externally, leaving the main function of this
algorithm (which is possibly hard-wired in the router dropping unit and the only access to that being
router commands which configure RED parameters) unchanged.

3.3 Implementation

Here the whole process of FQL-RED is explained step by step.

1. Initialization. The very first configuration of RED, which is performed by the network designer
and contains his expert knowledge. Initializing the learning parameters g and exploration rate q
is done here too.

2. Data gathering. Construct an input vector containing packet enqueue, packet drop, average queue
size, minimum threshold, maximum threshold, which defines the current state of the learning
agent.

3. Fuzzification. We apply a triangular membership functions to fuzzify each input vector into low,
medium and high.

4. Generation of reinforcement signal. The reinforcement signal is a linear combination of throughput of
the router and instantaneous queuing delay. These factors are inversely correlated, and thus the
learning mechanism tends to balance their trade-off in dynamic traffic conditions in the network.

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

5. Estimation of the optimal Q-value. The current input value fires a set of rules. The activated rules have
a truth value which is calculated by rule evaluation. The optimal Q-value is the maximum value
resulting from the truth value of each rule multiplied by its best action value in the whole rule base:

Q X
X w a

X
t

R t a U t
i

R A X

R tR A X

i i
i t

ii t

*() =
() × ()[]

()
∈∈ ()

∈ ()

∑
∑
α

α

max
(6)

In this equation Ri represents a rule from the rule base, aRi is truth value of this rule, A(Xt) is
the set of activated rules with input Xt, and wt is the table of Q-learning in time t. This table stores
values of state–action pairs corresponding to state i and actions listed in the Ui set.

6. TD error calculation. In order to calculate the transfer probability of each state–action to a specific
state, TD(0) error is calculated as follows:

� �ε γt t t t t t tr Q X Q X U X+ + += + × () − ()()1 1 1* , (7)

where rt+1 is the generated reinforce signal and g (0 < g � 1) is the discount factor.
7. Exploration/exploitation. One of the most important issues of reinforcement learning is to balance

exploration versus exploitation to find the best action while keeping good performance. We use
the following formula for action selection:

EE a w a
e

t
i

n at
() = () + ()

θ (8)

Figure 3. FQL Structure [66]

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

in which q is a positive coefficient for the direct exploration part, w at
i () is the action’s weight,

and nt(a) is the total number of times that the action has been used until time step t. EE becomes
maximal for the actions that have low weights but are also scarce. Each action should satisfy
some constraints to be applicable such as range checks and distance between thresholds. The
control mechanism embedded in our algorithm marks inapplicable actions with a setting so that
they can never be chosen.

8. Local e-Greedy. Local action selection in each rule will be done by a kind of e-Greedy strategy,
selects all rules’ candidates according to their EE values. Equation (9) formulizes this selection:

U U k U k at
i i i

a Ui
= () ()() = ()

∈
EE EEmax (9)

9. Updating FIS. This task is taken over by tuning action qualities, as equation (10) shows:

w U w U R A Xt
i

t
i

t
i

t
i

t R i ti+ +() = () + × ∀ ∈ ()1 1�ε α , (10)

10. Double e-Greedy action selection. After having selected all rule candidates, in the next higher
competition layer the total double e-Greedy or maximum e-Greedy action will be determined by
a pure greedy approach based on the rules’ truth values and the nominated actions’ EE from
previous steps. This procedure is described in equation (11):

U X U U X U Xt t t
i

t
i

R t
R A X

t
i

R ti
i t

i() = () × () = () × ()()
∈ ()

* EE EE* maxα α (11)

11. Estimation of current Q-value. Finally, this phase tends to computing and memorizing the Q-value
of the current state–action pair based on the new Q-value function after tuning action weight
parameter values through equation (12):

�Q X U X
X w U

X
t t t

R t t
i

t
i

R A X

R tR A X

ii t

ii t

, ()() =
() × ()

()
∈ ()

∈ ()

∑
∑

α

α
(12)

12. Actuation. The FQL algorithm functionality is independent of the chosen actions, so it is up to
network administrators to choose these actions. These actions perform a slight modification to all
parameters: changing minth, maxth, maxp and exponential weight factor. As advised in Xu et al. [36]
the actions concerning setting maxp are using AIMD instead of MIMD strategy. Also the changes
in maxth and minth should be small enough to avoid oscillation in queue size. Note that exponential
weight factor is a substitute for wq in this implementation, as suggested by OPNET documentation
[67], and is used to calculate wq as in equation (13) to provide more separation between values
of wq, giving it meaningful changes:

wq
w

=
−

2
1

exp (13)

In summary, the FQL-RED algorithm added some phases to the RED algorithm as mentioned, but did

not change its normal procedure, as marked in bold in Figure 4.

4. SIMULATION AND RESULTS

In order to evaluate the performance of FQL-RED a simulation by OPNET is arranged and two different
scenarios are employed. In both scenarios a common network configuration, often called Dumbbell
topology [31], is used to evaluate the performance of AQM schemes, as shown in Figure 5. This
topology imitates a subnet facing congestion, with two routers and a link connecting them that plays

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

the role of the traffic bottleneck. Router 1 tries to transfer the traffic via this congested link to Router
2, so the output interface of Router 1 is where the AQM scheme should be deployed. In the first
scenario, FQL-RED is compared against RED for a time-invariant HTTP traffic, and in the second
scenario the performance of FQL-RED challenges ARED and FC-RED with a time-varying mixed traffic.

4.1 Scenario 1: time-invariant traffic

The goal of this experiment is to observe the behavior of FQL-RED in a time-invariant traffic and
compare it with RED results. The proposed algorithm tries to achieve optimal policy, maximizing
throughput while minimizing average delay, using its well-defined actions. With time-invariant traffic,
FQL-RED is expected to set RED parameters in a way that fully improves throughput and delay using
a trial-and-error approach and embedded exploration/exploitation mechanism. Figure 6 demonstrates
the procedure of parameter adjustment by FQL-RED. As is clear in this graph, all parameters converge

For each packet arrival:
 Gather information from environment
 Fuzzify the inputs and create rule base
 Explore actions to find potential best actions
 Find best action due to learnt traffic model
 Update Q-learning tables
 Commit chosen action
 Calculate the average queue size qavg

If minh ≤ qavg < maxth

 Calculate probability pa

 With probability pa: mark/drop the arriving packet
Else if maxth ≤ qavg

 Mark/drop the arriving packet

Figure 4. Pseudo-code of FQL-RED algorithm

Figure 5. OPNET network model: bottleneck configuration known as dumbbell topology

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

to a constant value after a few episodes. This occurs because when the parameter reaches a suitable
value, the received reward from the environment increases and the estimated Q-value of the ‘no-
operation’ action dominates other values. Table 1 shows the initial values of RED and FQL-RED
parameters.

The learning process is expected to increase the average of the reward signal. In the next experiment,
the reinforcement signal used in FQL-RED is calculated for RED but no learning process is employed.
This will help us to monitor the effect of the learning process and the reason for superiority of FQL-RED
over RED. Figure 7 depicts this comparison.

Figure 8 demonstrates the average of queuing delay (Figure 8(a)) and throughput (Figure 8(b)) of
FQL-RED and RED, while Figure 8(c) shows the average queue length during this scenario. In this
implementation with regard to the definition of reward signal in the previous section, reinforcement is
considered as summation of throughput and queuing delay with equal coefficients. The choice of
coefficient indicates the importance of each factor and can be biased towards delay or throughput
regarding the quality of service that the network plans to provide.

As Figure 8(c) shows, adjusting the parameters of RED using FQL stabilizes average queue size,
leading to improved delay and throughput. The resulting adjustment may not as familiar for a domain
expert but, as simulations show, it performs well.

Figure 6. Change of parameters during simulation of Scenario 1 by FQL-RED

Table 1. RED and FQL-RED parameters: initial configurations on
R1 in Scenario 1

Parameter Value

Minimum threshold (minth) 20
Maximum threshold (maxth) 40
Maximum value for Pb (maxp) 0.3
Exponential weight factor 1.0
Buffer size 100

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

4.2 Scenario 2: time-varying mixed traffic

This simulation uses a time-varying mixed traffic and is intended to study the learning ability of
FQL-RED that enables it to react quickly and appropriately to sudden changes in traffic status.
Although the proposed algorithm adjusts parameters based on trial and error for unseen or unfamiliar
cases, in the case of long-term traffic there exist plenty of repeated or partly similar states. Thus the
slightly slow convergence of the algorithm in the early stages is compensated by rapid optimal action
selection in the later stages.

In this scenario the FQL-RED is tested against ARED and FC-RED. The latter algorithms only adjust
maxp, but the former aims to adjust all RED parameters, because an AQM scheme can handle a situation
by slightly changing a specific parameter rather than massively changing another one, as stated before.
For example, a small change in maxth can have the same effect as large changes in maxp on the
throughput and delay results. Not being limited to a single choice not only gives the algorithm more
flexibility but also increases its speed in handling various traffic situations. We claim that our algorithm
reacts faster and more accurately than RED, ARED, FC-RED, and theoretically other AQM schemes
without the capability of learning. Table 2 shows initial values of RED, FQL-RED, ARED and FC-RED
parameters.

Figure 9 describes the parameter tuning during simulation of the scenario, and this continuous
change justifies why FQL-RED does not converge to a fixed value for parameters in this time period.

Figure 10 illustrate the superiority of FQL-RED against the other three algorithms and it is evident
that it can improve delay (Figure 10(a)) and throughput (Figure 10(b)) better, maintaining a fairly
suitable queue size under different conditions, as Figure 10(c) shows.

The goal of FQL-RED in these scenarios is to achieve optimal policy. The optimal policy is a sequence
of actions leading to increased throughput while simultaneously lowering queuing delay. A so-called
network traffic is a set of traffic conditions (i.e. states in the FQL algorithm) which possibly occur in
a network, independent of the application that caused it. The main reason for using machine learning
in this problem is to obtain a prediction, so that FQL-RED algorithm will be able to predict the next
traffic state while observing previously seen traffic conditions and provide the router with the optimal
action to catch up with the goal of the system: higher throughput with lower queuing delay.
Application independence, periodic and monolithic characteristics of traffic in the real world, and input

Figure 7. Comparison of average reward of RED and FQL-RED in Scenario 1

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

Figure 8. (a) Average queuing delay; (b) average throughput; and (c) average queue size of
FQLRED and RED during simulation of Scenario 1

Table 2. RED, FQL-RED, ARED and FC-RED parameters: initial
configurations on R1 in Scenario 2

Parameter Value

Minimum threshold (minth) 20
Maximum threshold (maxth) 60
Maximum value for Pb (maxp) 0.1
Exponential weight factor 1.0
a (in ARED algorithm) 0.01
b (in ARED algorithm) 0.9
QT (in FC-RED algorithm) 40
Buffer size 100

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

signal fuzzification assure a finite set of traffic states encapsulated in a fuzzy rule base, which in turn
assures convergence of the system to the optimal solution. The observed difference in queue length of
RED and FQL-RED algorithms is due to actions chosen regarding traffic conditions by FQL-RED. The
key advantage of FQL-RED is improving RED performance without predefined parameters or any prior
knowledge of traffic shape. Regarding this issue, performance is defined in terms of higher throughput
and lower delay simultaneously.

5. CONCLUSION

This paper proposed an add-on to the original RED, granting adaptation by means of fuzzy Q-learning
to address the main issue of this algorithm, which is parameter sensitivity. The resulting FQL-RED
improves the performance of RED and adjusts these parameters in long-term traffic to optimally
balance two opposing factors of a gateway: throughput and queuing delay. This algorithm is
categorized as a self-adaptive one, inheriting this property from an artificial intelligence technique.
Reinforcement learning and specifically Q-learning is a good choice because of the dynamic and
episodic nature of network traffic. On the other hand, we enhance our learning mechanism with a

Figure 9. Change of parameters during simulation of Scenario 2 by FQL-RED

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

Takagi–Sugeno fuzzy inference system to provide our solution with two major benefits: in the first
place, to map a large state space to super-states with a reasonable number that covers a particular
situation of the network traffic; secondly to embed expert knowledge into the scheme. The former
means that the search space of reinforcement is small enough to ease convergence and the latter assures
that the network starts from a good initial setting and uses the experience of a network expert (e.g.
administrator) in decision making about packets. Note that in the worst case FQL-RED performs like
a RED gateway with imperfectly adjusted parameters. Also FQL-RED learns traffic patterns which lead
to congestion, and adapts parameters to effectively avoid congestion. This mechanism provides the
algorithm with several other benefits such as independence to the number of active TCP connections,
active adaptation to change in network topology or quality of service required, stable handling of
bursty traffic, and so on. Furthermore, with the assistance of FIS, the system is provided with scalability.

Figure 10. (a) Average queuing delay; (b) throughput; and (c) average queue length of FQL-RED
and RED during simulation of Scenario 2

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

Finally, it is shown that FQL-RED outperforms RED, ARED, and FC-RED with regard to design goals
(higher throughput with less delay).

Using more inputs, expanding the fuzzy inference system with advanced expert knowledge and
other fuzzification mappings, improving the machine learning component, integrating a total solution
of all RED defects into the learning process, e.g. fairness and misbehaving connections, by expanding
the reinforcement signal, changing the combination form of factors in this signal, and generating
standard congestion scenario benchmarks to compare this algorithm with other schemes are some
guidelines to enlighten future studies in this field.

REFERENCES

1. Floyd S, Jacobson V. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on
Networking 1993; 1: 397–413.

2. Dijkstra S. Modeling active queue management algorithms using stochastic Petri nets. Faculty of Electrical Engi-
neering, Mathematics and Computer Science, University of Twente, 2004; 79.

3. Su L, Hou JC. An active queue management scheme for Internet congestion control and its application to differentiated
services. Ohio State University, Columbus, OH, January 2000.

4. Lin D, Morris R. Dynamics of random early detection. In Computer Communication Review: Proceedings of ACM
SIGCOMM 1997, 1997; 127–137.

5. Teunis JO, Lakshman TV, Wong LH. SRED: stabilized RED. In Proceedings of IEEE INFOCOM 1999, March 1999;
1346–1355.

6. Pan R, Prabhakar B, Psounis K. CHOKe: a stateless active queue management scheme for approximating fair
bandwidth allocation. In Proceedings of IEEE INFOCOM 2000, April 2000; 942–951.

7. Seol JH, Lee KY, Hong YS. Performance improvement of adaptive AQM using the variation of queue length.
In IEEE Region 10 Conference TENCON 2006, 2006; 1–4.

8. Yamaguchi T, Takahashi Y. A queue management algorithm for fair bandwidth allocation. Computer Commu-
nications 2007; 30: 2048–2059.

9. Feng W, Shin KG, Kandlur DD, Saha D. The BLUE active queue management algorithms. IEEE/ACM
Transactions on Networking 2002; 10: 513–528.

10. Koo J, Song B, Chung K, Lee H, Kahng H. MRED: a new approach to random early detection. In 15th
International Conference on Information Networking, 2001; 347–352.

11. Kamra A, Kapila S, Khurana V, Yadav V, Shorey R, Saran H, Juneja S. SFED: a rate control based active queue
management discipline. IBM India Research Laboratory Research Report, 2000.

12. Kamra A, Saran H, Sen S, Shorey R. Fair adaptive bandwidth allocation: a rate control based active queue
management discipline. In Computer Networks 2004; 44: 135–152.

13. Long C, Zhao B, Guan X, Yang J. The yellow active queue management algorithm. Computer Networks 2005; 47:
525–550.

14. Agarwal MK, Gupta R, Kargaonkar V. Link utilization based AQM and its performance. In IEEE Global
Telecommunications Conference, Vol. 2, 2004.

15. Wang C, Li B, Hou YT, Sohraby K, Long K. A stable rate-based algorithm for active queue management.
Computer Communications 2005; 28: 1731–1740.

16. Parris M, Jeffay K, Smith FD. Lightweight active router-queue management for multimedia networking. in
Multimedia Computing and Networking: SPIE Proceedings Series, January 1999.

17. Chung J, Claypool M. Dynamic-CBT and ChIPS: router support for improved multimedia performance on the
Internet. In Proceedings of ACM Network and Operating System Support for Digital Audio and Video (NOSSDAV),
2000; 239–248.

18. Claypool M, Kinicki R, Hartling M. Active queue management for web traffic. In IEEE International Conference
on Performance, Computing and Communication, 2004; 531–538.

19. Hollot CV, Misra V, Towsley D, Gong WB. On designing improved controllers for AQM routers supporting
TCP flows. In Proceedings of IEEE INFOCOM 2001, April 2001; 1726–1734.

20. Aweya J, Ouellette M, Montuno DY. A control theoretic approach to active queue management. Computer
Networks 2001; 36: 203–235.

21. Kunniyur SS, Srikant R. An adaptive virtual queue (AVQ) algorithm for active queue management. IEEE/ACM
Transactions on Networking 2004; 12: 286–299.

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

22. Long CN, Zhao B, Guan XP. SAVQ: stabilized adaptive virtual queue management algorithm. IEEE Commu-
nications Letters 2005; 9: 78–80.

23. Yanping Q, Qi L, Xiangze L, Wei J. A stable enhanced adaptive virtual queue management algorithm for TCP
networks. In IEEE International Conference on Control and Automation, 2007; 360–365.

24. Chen CL, Yu JC. A proportional rate-based control scheme for active queue management. In IEEE International
Conference on Electro Information Technology, 2005; 6.

25. Lapsley D, Low S. Random early marking for Internet congestion control. IEEE Transactions on Networks 1999;
3: 1747–1752.

26. Deng X, Yi S, Kesidis G, Das CR. Stabilized virtual buffer (SVB): an active queue management scheme for
Internet quality-of-service. In IEEE Global Telecommunications Conference, Vol. 2, 2002.

27. Sun J, Zukerman M. RaQ: a robust active queue management scheme based on rate and queue length. Computer
Communications 2007; 30: 1731–1741.

28. Feng W, Kapadia A, Thulasidasan S. GREEN: proactive queue management over a best-effort network. In IEEE
GLOBECOM, November 2002.

29. Ryu S, Rump C, Qiao C. Advances in active queue management (AQM) based TCP congestion control.
Telecommunication Systems 2004; 25: 317–351.

30. Thiruchelvi G, Raja J. A survey on active queue management mechanisms. International Journal of Computer
Science and Network Security 2008; 8: 130–145.

31. Bitorika A, Robin M, Huggard M, McGoldrick C. A comparative study of active queue management schemes.
In Proceedings of IEEE ICC 2004, Vol. 201, 2004; 6.

32. Floyd S, Gummadi R, Shenker S. Adaptive RED: an algorithm for increasing the robustness of RED’s active
queue management, http://www.icir.org/floyd/papers.html [August 2001].

33. Iannaccone G, May M, Diot C. Aggregate traffic performance with active queue management and drop from
tail. ACM SIGCOMM Computer Communication Review 2001; 31: 4–13.

34. Wang C, Li B, Hou YT, Sohraby K, Lin Y. LRED: a robust active queue management scheme based on packet
loss ratio. In IEEE INFOCOM, 2004; 1–12.

35. Liu S, Basar T, Srikant R. Exponential-RED: a stabilizing AQM scheme for low-and high-speed TCP protocols.
IEEE/ACM Transactions on Networking 2005; 13: 1068–1081.

36. Xu YD, Wang ZY, Wang H. ARED: a novel adaptive congestion controller. In International Conference on Machine
Learning and Cybernetics, Vol. 2, 2005.

37. Joo C, Bahk S, Lumetta SS. A hybrid active queue management for stability and fast adaptation. Journal of
Communication and Networks 2006; 8: 93–105.

38. Subasree S. Fuzzy DS RED: an intelligent active queue management scheme for TCP/IP Diff-Serv. In
International Conference on Computational Intelligence, Istanbul, Turkey, 2004.

39. Wang C, Li B, Sohraby K, Peng Y. AFRED: an adaptive fuzzy-based control algorithm for active queue
management. In 28th Annual IEEE International Conference on Local Computer Networks, 2003; 12–20.

40. Sun J, Zukerman M, Palaniswami M. Stabilizing RED using a fuzzy controller. In IEEE International Conference
on Communications, 2007; 266–271.

41. Sun J, Zukerman M. Improving RED by a neuron controller. In Managing Traffic Performance in Converged
Networks, Vol. 4516. Springer: Berlin, 2007; 434.

42. Sun J, Chan S, Ko KT, Chen G, Zukerman M. Neuron PID: a robust AQM scheme. In Proceedings of ATNAC,
2006; 259–262.

43. Jahanshahi M, Meybodi MR. An adaptive congestion control method for guaranteeing queuing delay in
RED-based queue using learning automata. In International Conference on Mechatronics and Automation, 2007;
3360–3365.

44. Wang X, Wang Y, Zhou H, Huai X. PSO-PID: a novel controller for AQM routers. In International Conference
on Wireless and Optical Communications Networks, 2006; 5.

45. Jun-song W, Zhi-wei G, Yan-tai S. RBF-PID based adaptive active queue management algorithm for TCP
network. In IEEE International Conference on Control and Automation, 2007; 171–176.

46. Yanfei F, Fengyuan R, Chuang L. Design of an active queue management algorithm based fuzzy logic decision.
In International Conference on Communication Technology Proceedings, 2003; 286–289.

47. Chen CK, Kuo HH, Yan JJ, Liao TL. GA-based PID active queue management control design for a class of TCP
communication networks. Expert Systems with Applications 2007; 36: 1903–1913.

48. Di Fatta G, Hoffmann F, Lo Re G, Urso A. A genetic algorithm for the design of a fuzzy controller for active
queue management. IEEE Transactions on Systems, Man and Cybernetics 2003; 33: 313–324.

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

49. Fan Y, Jiang Z, Panwar S. An adaptive control scheme for stabilizing TCP. In 5th World Congress on Intelligent
Control and Automation, Hangzhou, China, 2004.

50. Qiang C, Yang OWW. A ST-PI-PP controller for AQM router. In IEEE International Conference on Communications,
2004; 2277–2281.

51. Wang H, Meng B, Jing Y, Liu X. An adaptive fuzzy sliding mode control for AQM systems. In American Control
Conference, 2008; 4445–4450.

52. Feng WC, Kandlur DD, Saha D, Shin KG. A self-configuring RED gateway. In Proceedings of IEEE INFOCOM’99,
1999.

53. Nyirenda CN, Dawoud DS. Multi-objective particle swarm optimization for fuzzy logic based active queue
management. In IEEE International Conference on Fuzzy Systems 2006; 2231–2238.

54. Zhani MF, Elbiaze H, Kamoun F. SNFAQM: an active queue management mechanism using neurofuzzy
prediction. In 12th IEEE Symposium on Computers and Communications, 2007; 381–386.

55. Hariri B, Sadati N. NN-RED: an AQM mechanism based on neural networks. Electronics Letters 2007; 43:
1053–1055.

56. Floyd S. Recommendations on the use of the gentle variant of RED (2000). http://www.icir.org/floyd/red/
gentle.html [12 June 2010].

57. Zhou K, Yeung KL, Li VOK. Nonlinear RED: a simple yet efficient active queue management scheme. Computer
Networks 2006; 50: 3784–3794.

58. Hu L, Kshemkalyani AD. HRED: a simple and efficient active queue management algorithm. In
13th International Conference on Computer Communications and Networking ICCCN 2004, 2004; 387–
393.

59. Chrysostomou C, Pitsillides A, Rossides L, Sekercioglu A. Fuzzy logic controlled RED: congestion control in
TCP/IP differentiated services networks. Control Engineering Practice 2003; 8: 79–92.

60. Hadjadj Aoul Y, Mehaoua A, Skianis C. A fuzzy logic-based AQM for real-time traffic over internet. Computer
Networks 2007; 51: 4617–4633.

61. Morris R. Scalable TCP congestion control. In IEEE INFOCOM 2000, Vol. 3, Tel Aviv, Israel, 2000;
1176–1183.

62. Hashem E. Analysis of random drop for gateway congestion control. Report LCS TR-465, Laboratory for
Computer Science, MIT, Cambridge, MA, 1989.

63. Zheng B, Atiquzzaman M. DSRED: An Active Queue Management Scheme for Next Generation Networks. IEEE
Computer Society: Washington, DC, 2000; 242.

64. Sutton RS, Barto AG. Reinforcement learning: An Introduction. MIT Press: Cambridge, MA, 1998.
65. Berenji HR. Refinement of approximate reasoning-based controllers by reinforcement learning. In Proceedings

of the 8th International Workshop Machine Learning, 1990; 475–479.
66. Naeeni AF. Advanced multi-agent fuzzy reinforcement learning. Master’s thesis, Dalarna University, 2004.
67. OPNET Technologies (2004). http://www.opnet.com [12 June 2010].

AUTHORS’ BIOGRAPHIES

Seyed Saeid Masoumzadeh was born in Qazvin, Iran. He received B.Sc. degree in computer hardware from
Meybod Azad University and M.Sc. degree in artificial intelligence from Qazvin Azad University in 2004 and 2009,
respectively. His research interests are intelligent and self-adaptive control, reinforcement learning, quality of
service management, and image mining.

Kourosh Meshgi, born in Tehran, is a graduate student in robotics research lab in Amirkabir University of
Technology, Tehran, Iran under supervision of Dr. Shiry. He also attended in this university before and earned his
Bachelor’s degree (2008) in hardware engineering working on intelligent network hardware. His research interests
include computer vision, machine learning, robotics and cognitive neuroscience and he’s currently working on
reinforcement learning and brain derived vision.

Saeed Shiry Ghidary was born in Zanjan, Iran. He received his B.Sc. degree in Electronic engineering and M.Sc.
in computer architecture from Amirkabir University of Technology in 1990 and 1994 respectively. He studied
Robotics and artificial intelligent systems in Kobe University and got his PhD in 2002. He is an assistant Prof. at

S. S. MASOUMZADEH ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

Amirkabir University of Technology since 2004. His research interests include intelligent robotics, machine
learning, machine vision, cognitive science and brain modeling.

Gelareh Taghizadeh was born in Qazvin, Iran. She received her B.Sc. degree in computer hardware and M.Sc.
degree in artificial intelligence from Qazvin Azad University in 2006 and 2010 respectively. She is currently a
lecturer at University of Applied Science and Technology. Her research interests are intelligent optimization,
natural inspired algorithms and artificial immune systems.

FQL-RED

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2010)
DOI: 10.1002/nem

